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Sequential Indicator Simulation (SIS) realizations often exhibit high and unrealistic short scale 
variability; this is due to the uncontrolled transitions between classes and the randomness inside 
each class introduced by the Monte-Carlo drawing within classes. Despite these problems, SIS 
has some useful properties that most of the other simulation techniques have not; this motivates 
further research to overcome the problems of SIS. As a first step towards the improvement of SIS, 
the impact of this unwarranted short scale variability in the block scale uncertainty is analyzed 
and compared to Sequential Gaussian Simulation results in a numerical example, obtaining a 
reduced block scale uncertainty for SIS results. A path for subsequent research work to improve 
the algorithm and its results is also delineated. 

Introduction 

Gaussian based simulation techniques are popular and relatively simple methods to simulate 
continuous variables; however they have some important limitations: they are restricted by the 
assumption of multigaussianity of the Random Function model, the maximum entropy property 
related to this model reduces the correlation of extreme values, and a single variogram model is 
used, locking the correlation at every threshold. These limiutations make these algorithms not 
suitable for real data sets where a strong spatial correlation of low or high values is present. In 
addition, they are not sufficiently flexible to handle mixed populations or to incorporate soft data.  

Sequential Indicator Simulation (SIS) for continuous variables can handle variables with any type 
of distribution and that do not fulfill satisfactorily the multigaussian assumption even after normal 
scores transformation. It offers a greater flexibility by using different variograms for different 
thresholds, allowing the spatial modeling of continuous variables with complex patterns of spatial 
distribution for low, median and high values. Besides this characteristic, SIS has other properties 
that could make it suitable for its use with continuous variables: it allows a straightforward 
integration of mixed data types, as well as secondary soft data, (Deutsch and Journel, 1997) and it 
is also widely used and not difficult to understand. 

Nevertheless, the SIS algorithm is affected by several practical and theoretical difficulties and 
disadvantages (Chilès and Delfiner, 1999; Christakos, 2000; Emery and Ortiz, 2004), the most 
important ones among them, stated in the context of this work, are two: 

• The uncontrolled transitions between classes that are product mainly, but not only, of the 
lack of information about the inter-class spatial cross-correlation  results in the unrealistic 
overlapping of low and high grade patches of SIS realizations. 

• The random and uncontrolled drawing of simulated values on the conditional cumulative 
distribution function (ccdf), which has been constructed by indicator Kriging, results in 
pure randomness within class boundaries. 
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Together, both disadvantageous characteristics produce the excess variability  in SIS realizations, 
that is, the spatial persistence of the unstructured short scale intermixing of low and high values 
all over the area under study, which translates in a reduced variability in the block scale due to the 
averaging of low and high values that lead to smoothed results. The first drawback can be 
partially mitigated by introducing the interclass correlation using the complete set of indicator 
direct and cross-variograms for constructing the ccdf by indicator co-kriging. However, this 
means an increased effort in modeling the entire variogram matrix for several thresholds using the 
Linear Model of Corregionalization which not always fits satisfactorily the entire set of 
variograms, particularly the cross-variograms between extreme thresholds. This approach can 
also increase the order relation problems in constructing the ccdf. To overcome the second 
problem the idea is to introduce spatial ordering within classes by considering the spatial 
correlation among the simulated values inside each class and between the simulated values and 
the class boundaries. 

The objective of this work is to analyze and evaluate numerically the impact of SIS peculiar short 
scale variability in the block scale uncertainty assessment using a real data set and assessing the 
sensitivity of this variability to the variogram uncertainty. 

Statistical and Geostatistical Data Analysis 

The data used in this study is a subset of a drillhole exploration campaign of a Chilean copper 
deposit.  This data subset comprises all the samples corresponding to a single bench of 12m 
height, located between elevations 3928 and 3940, and belonging to the Tourmaline Breccias 
rock type. A sample location map is presented in Figure 1. 

A total of 180 samples are included in this data set, with copper grade values ranging between 
0.21% and 6.89%. Declustering is performed to obtain representative statistics. The declustered 
mean is 1.26 %Cu, the median is 1.10 %Cu and the variance,0.763 (%Cu)2; Figure 2 shows the 
histogram of declustered values. Nine thresholds are chosen to discretize the condifional 
distributions (Table 1). 

Table 1: Thresholds for Indicator Variograms 
CDF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Cu% 0.53 0.66 0.784 0.93 1.1 1.24 1.38 1.62 1.949 

Two sets of normal score transformed data are generated. The first one is created without 
considering the declustering weights to be used in the indicator variography. The second set is 
generated considering the declustering weights and it is used for the Gaussian simulation. This 
procedure is necessary because the normal scores transformed data not always have variance 
equal to one when declustered weights have been used in the transformation. 

Spatial Correlation Analysis 

From the variogram map of normal scores transformed values, the direction of major continuity 
in the horizontal plane can be defined with an azimuth between 120º and 135º. Calculation of the 
experimental variograms confirms the orientation of the major axis. 

In order to account for the variogram uncertainty, three models are fitted for the continuous 
variogram and each indicator variogram; these models correspond to low, medium and maximum 
continuity scenarios.   The variogram model for maximum spatial continuity is defined as the 
model with the lowest nugget effect and the largest range that can be reasonably fitted to the 
experimental continuous and indicator variograms. The minimum spatial continuity model has the 
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largest nugget effect and shortest range that can be fitted to the experimental variograms. And the 
medium spatial continuity model is the best fit model, the one that better describes the 
experimental variogram.  The ratios of ranges and nugget effect of long continuity and short 
continuity models with respect to the medium continuity model were kept constant when possible 
for the all indicator variograms. An exponential variogram model was chosen to fit the 
continuous and all the indicator variograms, the parameters of the resultant fitted models are 
presented in Table 2 (practical range is shown). 

Table 4: Ranges for the sensitivity analysis 
 Spatial Continuity: Minimum Middle Maximum 
 Variogram  Axis Az Variogram ranges & N.E. 
NS-cont Major 120 260 280 320 
  Minor 30 130 140 200 
  Nugget   0.35 0.25 0.15 
I10 Major 120 153 170 196 
  Minor 30 18 20 28 
  Nugget   0.35 0.25 0.15 
I20 Major 120 198 220 253 
  Minor 30 63 70 98 
  Nugget   0.14 0.1 0.06 
I30 Major 120 180 200 230 
  Minor 30 126 140 196 
  Nugget   0.42 0.3 0.18 
I40 Major 140 162 180 207 
  Minor 60 99 110 154 
  Nugget   0.21 0.15 0.09 
I50 Major 120 162 180 207 
  Minor 30 99 110 154 
  Nugget   0.14 0.1 0.06 
I60 Major 130 144 160 184 
  Minor 40 99 110 154 
  Nugget   0.28 0.2 0.12 
I70 Major 130 117 130 150 
  Minor 40 36 40 56 
  Nugget   0.28 0.2 0.12 
I80 Major 120 90 100 115 
  Minor 30 36 40 56 
  Nugget   0.56 0.4 0.24 
I90 Major 120 90 100 115 
  Minor 30 36 40 56 
  Nugget   0.28 0.2 0.12 
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Uncertainty Analysis 

Sequential Gaussian Simulation and Sequential Indicator Simulation are performed over a 2m x 
2m x 12m cell size grid covering 300m in the east-west direction, 600m in the north-west 
direction and coincides with the bench 3928. A search ellipse defined by a major axis of 300 m 
with an azimuth of 120º and a minor axis of 150m was used in both SGS and SIS, with a 
maximum number of original samples of 10, and maximum number of simulated nodes of 6. In 
order to improve the histogram reproduction in SIS, 200 tabulated quantile values were used to 
control the cumulative distribution interpolation between the nine thresholds. 

Three groups of 100 SGS and three groups of 100 SIS realizations are generated using the 
corresponding minimum, middle and maximum continuity variogram models. Realizations are 
clipped by the boundary of the Tourmaline Breccias rock type. The histograms of all the 
simulated values in every realization are shown in Figures 3 and 4, next to sample realization 
maps. These point support realizations are averaged to a SMU size of 12m x 12m x 12m. The 
histograms and sample maps of the averaged values are presented in Figures 5 and 6. While the 
histogram reproduction is comparable for both simulation techniques, the patchiness of SIS 
realizations is clearly evident in Figure 4 where abrupt and disordered transitions between classes 
can be observed. However, when averaged to 12m x 12m blocks, SGS realizations preserve the 
distinction of high and low grade zones, but SIS realizations tend to smooth this distribution 
making this delineation very fuzzy and yielding lower means and variances than SGS. 

Sensitivity of SGS and SIS to the Spatial Correlation 

In order to assess and compare the sensitivity of both SGS and SIS techniques to the uncertainty 
in the parameters of spatial continuity, a group of simple transfer functions is defined:  

• Recoverable metal content; 

• Recoverable proportion of total tonnage; and  

• Average grade above cut-off.  

The cut-off is fixed as 1.5% Cu, which is compatible with an open pit copper mine (this is very 
high, but used for illustration purposes only). These transfer functions are calculated for all 
realizations at the SMU scale. The standard deviation of the transfer function is used as a measure 
of uncertainty. The comparative results of the variogram continuity impact on transfer functions 
are presented as histograms in Figures 7, 8, and 9. 

In figure 9, it can be observed that the tonnage proportion above cut-off yields to a lower 
dispersion in the histograms corresponding to SIS averaged realizations, with a variance around 
2.1 for all variograms models, which is below the variance of the same transfer function applied 
to SGS averaged realizations. For SIS, the direct relationship between the mean of the 
recoverable average copper grade above cut-off and the spatial continuity of the variogram model 
is clear, while SGS does not show any particular relation between both. This relationship can be 
explained by the decreasing influence of the relatively few high values as the nugget effect 
increases and the variogram range decreases, lowering in this way the proportion of simulated 
values over the upper thresholds and increasing the smoothing of SIS in the SMU scale averages.   
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Interpretation of Results 

As seen in Figures 3 and 4, the declustered sample histogram is slightly better reproduced by the 
Sequential Gaussian Simulation than by the Sequential Indicator Simulation even when quantile 
interpolation between thresholds is used. The realization plots of SGS look better structured and 
more geologically appealing, while realizations generated with SIS show the characteristic patchy 
appearance, with the presence of adjacent low and high grade zones, and randomness inside 
classes.  

When averaged to a larger SMU size, SGS realizations clearly preserve the structure of high and 
low grade areas in concordance with the original sample values, but this differentiation is less 
apparent in the SIS realizations, becoming almost indistinguishable for the indicator simulations 
when a low continuity variogram model is used. The smoothing in the SMU scale is caused by 
the increasing of simulated values heterogeneity all over the study area as the nugget effect 
increases and the range decreases. This smoothing effect of decreasing variogram continuity is 
reflected as a smaller variance at the SMU scale in SIS realizations, but not in SGS realizations.  

Overall uncertainty has been quantified by the standard deviation of the response: the average 
grade above cut-off, the proportion of recoverable tonnage and the recoverable metal content. The 
response of overall uncertainty to changes in the variogram continuity is summarized in Figure 
10:  

• The uncertainty in the recoverable tonnage (Figure 10a) is larger for SGS results but 
decreases as the spatial correlation in the variogram model increases. SIS results present a 
lower recoverable tonnage uncertainty and change only slightly as the modeled continuity 
of grades changes.  

• For SIS results, the standard deviation of the average cooper grade above cut-off (figure 
10b) increases with the continuity of the variogram model. This positive relationship 
among the average ore grade uncertainty and the spatial continuity can be explained by 
the increased smoothing of the SMU grades related to the loss of structure in SIS 
realizations when the spatial continuity is reduced. Thus, not only the variance of all 
simulated values reflect this but also the standard deviation of the average ore grade 
transfer function, which can even be comparable to the standard deviation corresponding 
to SGS results when a high continuity variogram model is used. This function applied to 
SGS results does not show a clear tendency related to the level of spatial continuity. 

• The recoverable metal content (Figure 10c), being a product of the previous transfer 
function, reflects the same features, this is, a relatively low standard deviation of the 
recoverable tonnage, and positive relationship between the spatial continuity and the 
uncertainty in the average grade above the cut-off when these transfer functions are 
applied to SIS results. 

Conclusions and Future Work 

As expected, the increased and unrealistic short scale variability in the SIS realizations not only 
produces a misleading low variability at the SMU scale; it can also be observed in the SIS 
realizations maps and in the sensitivity analysis for different transfer functions when imposing 
different continuity in the variogram models. It is important to notice that the uncertainty in SGS 
results is generally larger than when using SIS, for all the transfer functions considered. The 
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homogeneous mixture of low and high values of SIS results yields to an “artificially” reduced 
uncertainty at block support or after a transfer function is applied. 

The loss of spatial structure in the short scale, translates in the increasing of smoothness at the 
SMU scale, lowering the uncertainty on the average ore grade for SIS results. Intuitively, one 
would expect the opposite: The higher the spatial continuity, the lower the uncertainty in the 
transfer function. SGS results suit better this expected behaviour, uncertainty in the recoverable 
tonnage and recoverable metal content decreases slightly as variogram continuity increases.  

In despite of the unwanted consequences of uncontrolled transitions between different classes and 
the randomness inside classes, SIS has some desirable properties that Gaussian simulation 
techniques do not have. One of these properties observed and utilized in this work is its flexibility 
to handle different spatial continuity models by defining a different variograms model for each 
threshold. The unique properties of SIS are a strong motivation to research techniques and 
methods to overcome the severe limitations of this simulation technique.  

Future work in this direction may be focused on two objectives: (1) Accounting for cross 
correlation between classes in order improve the control in the transitions between them.  (2) 
Reducing the randomness inside each class by introducing spatial correlation.  In order to 
accomplish the first objective the main idea is the implementation of the full indicator Cokriging 
in the SIS algorithm. This requires the simultaneous modeling of      K (K+1)/2 indicator direct 
and cross-variograms for K thresholds using the Linear Model of Coregionalization (LMC). 
Nevertheless, this model often gives a coarse approximation to experimental indicator cross-
variograms of thresholds widely separated, particularly when the continuous variable exhibits a 
low nugget effect.  In response to this inconvenient the adjacent thresholds indicator approach 
(Goovaerts, 1994) is suggested; this is, to use just the cross variograms between the closest upper 
and lower classes to the corresponding threshold and the direct variograms and discarding the 
indicator cross variograms of farther thresholds to permit a good LMC fitting.  To accomplish the 
second objective it has been suggested to introduce the distance of the node to the closest class 
edge as a secondary correlated variable (Ortiz, Neufeld, and Deutsch, 2005). Further work is 
needed to determine the best approach to correct the randomness inside classes.   
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Figure 1: Drillhole sample locations in bench 3928  
 
 
 

 
Figure 2: Histogram of declustered grades  
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Figure 3. Left: Histograms of all simulated values by SGS with high (top), middle and low 
(bottom) spatial continuity variogram models. Right: sample realizations. 
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Figure 4. Left: Histograms of all short scale  simulated values by SGS with high (top), middle 
and low (bottom) spatial continuity variogram models. Right: sample realizations. 
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Figure 5. Left: Histograms of SGS results averaged in a 12m x 12m SMU scale corresponding to 
high (top), middle and low (bottom) spatial continuity variogram models. Right: Sample 
Realizations. 
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Figure 6. Left: Histograms of SIS results averaged in a 12m x 12m SMU scale corresponding to 
high (top), middle and low (bottom) spatial continuity variogram models. Right: Sample 
Realizations. 
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Figure 7: Histograms of the proportion of recoverable Tonnage for 100 SGS (left) and 100 SIS 
(right) realization using different spatial continuity models. 
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Figure 8: Histograms of the average grade above cut-off for 100 SGS (left) and 100 SIS (right) 
realization using different spatial continuity models. 
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Figure 9: Histograms of the average grade above cut-off for 100 SGS (left) and 100 SIS (right) 
realization using different spatial continuity models. 
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Figures 10a to 10c: Comparison of the uncertainty measure (standard deviation) of different 
transfer functions applied to SGS and SIS results in the SMU scale. 
 
 

Fig. 10a: Standard Deviation of the Proportion of 
Recoverable Tonnage 
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Fig. 10b: Standard Deviation of Average Cu grade 
above Cut-Off 
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Fig. 10c: Standard Deviation of Recoverable Metal
Content
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